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Abstract

When an industrial fuel cell is planned to be installed in a power system, locating it where the investment makes the maximum saving on the
total operating cost of the power system is preferred for more economic power system operation. The cost sensitivity w.r.t. the bus MW powers
will be a useful tool for finding the optimal location of the fuel cell in this case. This paper presents the economic location of an industrial fuel cell
in a power system using this cost sensitivity. The cost sensitivity is derived in normal power flow using the optimization technique, in which the
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ower system operating cost is defined as the objective function and the power flow equations as the constraints.
Optimal location of 1 MW class fuel cell is demonstrated in an example power system.
2005 Elsevier B.V. All rights reserved.
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. Introduction

When we look for a site to construct a power plant, we usually
onsider the cost of building site, transportation, convenience for
aintenance and other factors.
After the commercial operation of the power plant, however,

he output of the new generator affects the output of other exist-
ng generators and system transmission losses. That is, the MW
utput of the new power plant affects the total system operating
ost, from the perspective of electric power engineering.

The total system operating cost is represented by the summa-
ion of the operating cost of each power plant, most of which is
sually the fuel cost. Minimizing this cost is the most important
actor for a more economical power system.

Assume that an industrial fuel cell plant is planned to be
nstalled at a substation in a power system, and we want to choose
he place where the investment can create the maximum saving
n the total system operating cost. In this case, the sensitivity
f the operating cost w.r.t. the incremental bus power will be a
seful tool for finding the optimal location.

There are many types of power plants in a power system.
Mainly the plant type and MW output of the generator determine
the operating cost of the power plant.

In conventional power system computation, the operating
cost of each power plant is usually modeled as the quadratic
function of generator MW output, e.g., as shown below [1]:

Fi(PGi) = aiP
2
Gi + biPGi + ci (1)

where Fi, PGi and ai, bi and ci, are the operating cost in $ h−1,
generator MW output and the coefficients defined for the ith
generator bus, respectively. We see in (1), however, ∂Fi/∂Pj –
the derivative of the operating cost w.r.t. the active power of an
arbitrary bus j – is nonzero only for i = j, otherwise the derivative
is zero for i �= j.

To obtain the operating cost sensitivity of an arbitrary bus,
revision of the cost function is needed. Jang et al. replaced the
MW generation PG in the cost function by the bus angle θ in
order to obtain the approximate cost sensitivity using DC power
flow [2].

In this paper, the cost function is represented by the normal
∗ Tel.: +82 2 936 1906; fax: +82 2 978 2754.
E-mail address: 85lee@hanafos.com.

power flow equation. And then, the author presents the derivation
of the exact cost sensitivities in normal power flow using an
optimization technique.
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Optimal location of a fuel cell investment using these cost
sensitivities is demonstrated in a sample system. Simulation
results show that investing the fuel cell to the bus that has the
highest cost sensitivity creates the maximum saving on the total
system operating cost.

2. Power flow computation by normal power flow

In the conventional power flow computation for an n-bus sys-
tem, the following hybrid form of power flow equations given
for bus i is often in use [3]:

Pi = Vi

n∑
m=1

Vm[Gim cosθim + Bim sinθim], (2.1)

Qi = Vi

n∑
m=1

Vm[Gim sinθim − Bim cosθim], (2.2)

for 1 ≤ i ≤ n, where Pi and Qi are, respectively, the active and
reactive power of bus i, Gim and Bim are, respectively, the con-
ductance and susceptance terms of row i and column m in YBUS
matrix, Vi and Vm are, respectively, the bus voltage of bus i and
m and θim is the angle difference between bus i and m.

The following is the pth iteration equation for the
Newton–Raphson method in solving (2.1) and (2.2).[
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where Xim is the reactance between bus i and m. Power flow
calculation by Eq. (5) is so-called the “DC power flow”. This
computation is far easier than the normal power flow but the
results are approximate [5].

3. Cost function represented by power flow equation

Rephrasing (2.1), Pi – the MW power injection of bus i – is
given by the following power flow equation:

Pi = Pi(θ, V ) = Vi

∑
Vm(Gimcos θim + Bimsin θim) (6)

where θ and V are the vectors of bus angle and voltage, respec-
tively. Substituting (6) for PGi in the cost function (1), we can
obtain the revised cost function Fi(θ, V) containing θ and V as
follows:

Fi(θ, V ) = ai[Pi(θ, V )]2 + biPi(θ, V ) + ci (7)

Then, ∂Fi/∂θ and ∂Fi/∂V can be obtained by differentiating
(7) w.r.t. θ and V. Thus, the nonzero cost sensitivities ∂Fi/∂Pj for
an arbitrary bus j can be obtained by the following relations:

∂Fi(θ, V )

∂Pj(θ, V )
= ∂Fi

∂θ

∂θ

∂Pj

+ ∂Fi

∂V

∂V

∂Pj

(8)

4. Derivation of cost sensitivity in normal power flow
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Vp+1 = θ

Vp
− J−1(θp, Vp)

�P(θ , V )

�Q(θp, Vp)
(3)

here J is the Jacobian matrix as shown below:

=

⎡
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(4)

Eq. (3) is iterated until the mismatches reach the tolerance.
his is quite a complicated procedure, which is so-called the
normal power flow ” [4].

Meanwhile, by approximating Vi = Vm � 1.0, sin θim � θim

nd G� 0, Eq. (2.1) can be revised as follows:

i =
n∑

m=1,m�=i

θim

Xim

(5)
Let Cost be the total system operating cost. Then, we have:

ost(θ, V ) =
NG∑
i=1

Fi(θ, V ) (9)

here NG is the number of the generating plants.
Let us consider a method by which the sensitivity of Cost(θ,

) w.r.t. the incremental bus powers can be derived in normal
ower flow calculation. The following can be a mathematical
ormulation for such a problem [6].

Minimize Cost(θ, V )

subject to PSPEC = P(θ, V ),

QSPEC = Q(θ, V ),

(10)

here PSPEC and QSPEC are the active and reactive powers spec-
fied for each bus, respectively. The Lagrangian function M is:

(θ, V ) := Cost(θ, V ) + µT
P [P − PSPEC]+µT

Q[Q − QSPEC],

(11)

here µP and µQ are the Lagrangian multipliers. And the opti-
ality conditions are:

∂M

∂θ
= ∂Cost

∂θ
+

(
∂P

∂θ

)T

µP +
(

∂Q

∂θ

)T

µQ = 0, (12)

∂M

∂V
= ∂Cost

∂V
+

(
∂P

∂V

)T

µP +
(

∂Q

∂V

)T

µQ = 0, (13)

∂M

∂µP

= P(θ, V ) − PSPEC = 0, (14)
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∂M

∂µQ

= Q(θ, V ) − QSPEC = 0· (15)

From (11), we obtain:[
∂M

∂PSPEC

]
= −µP, (16)

[
∂M

∂QSPEC

]
= −µQ· (17)

Since the results of the power flow calculation satisfy the
optimality conditions (14) and (15), the Lagrangian function M
includes only Cost. Thus, (16) and (17) can be re-written as
follows:[
∂Cost

∂P

]
= −µP, (18)

[
∂Cost

∂Q

]
= −µQ· (19)

Re-arranging (12), (13) and (18), (19) yields:⎡
⎢⎢⎣

∂Cost

∂P
∂Cost

∂Q

⎤
⎥⎥⎦ = −

[
µP

µQ

]
= J−T

⎡
⎢⎣

∂Cost

∂θ
∂Cost

∂V

⎤
⎥⎦ (20)
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Table 1
Transmission line parameters (p.u.)

From bus To bus R X Shunt Y

1 2 0.042 0.168 0.041
1 5 0.031 0.126 0.031
2 3 0.031 0.126 0.031
3 4 0.168 0.672 0.082
3 5 0.053 0.210 0.051
4 5 0.063 0.252 0.061

Table 2
Specified bus data for power flow solution (MVAbase = 100)

P (p.u.) Q (p.u.) V (p.u.) θ (rad)

Bus l 1.04 0
Bus 2 −1.15 −0.60
Bus 3 1.10 1.02
Bus 4 −0.70 −0.30
Bus 5 −0.85 −0.40

Table 3
Results of power flow computation for base case and cost sensitivities

P (p.u.) Q (p.u.) V (p.u.) θ (rad) Cost sensitivity
($ per 100 MW)

Bus l 1.714 0.798 1.04 0 –
Bus 2 −1.15 −0.60 0.961 −0.104 5541.7
Bus 3 1.10 0.683 1.02 −0.053 –
Bus 4 −0.70 −0.30 0.875 −0.234 6076.5
Bus 5 −0.85 −0.40 0.955 −0.113 5585.7

Total system operating cost = 28,631.9 $ h−1.

Cost functions F1 and F3 ($ h−1) for Hestia and Apollo power
plant are assumed:

F1 = 120P2
G1 + 4800PG1 + 1200

F3 = 240P2
G3 + 16000PG3 + 960

(21)

Assume that 1 MW fuel cell is to be invested in one of the
three cities to minimize CO2 gas emission. For convenience, we
assume that the fuel cell is being operated 24 h a day at its full
capacity and the power factor is maintained 1.0.

Let us find the location where the investment gives the max-
imum saving on the total system operating cost.

Since Troy (bus 4) shows the highest cost sensitivity in
Table 3, it can be the first candidate for the investment. Table 4
is the comparison of the cost-savings after 1 MW of fuel cell
investment to each city.

Table 4
Comparison of the cost-savings after 1 MW investment

Invested bus Total operating cost ($ h−1)
after 1 MW investment

Cost-saving ($ h−1) Rank

Bus 2 28576.5 55.4 3
Bus 4 28571.2 60.7 1
Bus 5 28576.0 55.9 2
This enables us to calculate directly the exact sensitivities of
he total system operating cost w.r.t. the bus powers [7].

. Economic location of a fuel cell system in a sample
ower system

Simulation has been performed for a sample five-bus system
1]. Assume the example of three hypothetical cities—Athene
bus 2), Troy (bus 4) and Thebes (bus 5). They are fed by Hestia
ombined cycle power plant (bus 1) and Apollo solar cell power
lant (bus 3) as shown in Fig. 1. Transmission line parameters
re given in Table 1. Specified bus data for power flow solution
re shown in Table 2. The results of power flow computation for
ase case and the corresponding cost sensitivities are shown in
able 3.

Fig. 1. A five-bus system.
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As we see in Table 4, installing the fuel cell in Troy that has
the highest MW cost sensitivity yields the maximum saving on
the total system operating cost.

We also see that installing in Athene (bus 2) that has the
lowest sensitivity yields the smallest saving.

This implies that we can obtain $127.2 of more saving a day
($5.3 × 24 h) when installing the fuel cell in Troy compared to
installing in Athene. If 10 units of 1 MW fuel cell are to be
invested, we can expect about 0.5 million $ in annual savings.

The operating cost of the fuel cell itself is not included for
computational convenience.

6. Conclusion

This paper presents the economic location of an industrial
fuel cell in a power system using cost sensitivity.

Cost sensitivity is derived in normal power flow using opti-
mization technique.

Optimal location of 1 MW class fuel cell is demonstrated in
a sample power system.

Simulation results show that investing the fuel cell to the bus
that has the highest cost sensitivity creates the maximum saving
on the total system operating cost.
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